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Robust greedy algorithms for the Max-Cut
relaxation

Bernardo Gonzalez Torres, Angel Eduardo Rodriguez Fernandez, Ricardo Menchaca Mendez

Abstract—A classic result by Goemans and Williamson for the maximum cut (Max-Cut) problem is their randomized approximation
algorithm [1] which guarantees to deliver a solution of expected value at least 0.87856 times the optimal value. This algorithm use a
simple and elegant technique that randomly rounds the solution to a semidefinite programming relaxation. Solving this relaxation typically
requires to use interior point methods or other sophisticated algorithms. We present a simple but robust greedy algorithm to solve this
relaxation, with time complexity O(mn) and space complexity O(n2) (which is the minimum required to store the solution, assuming the
solution is full rank), where n is the number of nodes and m is the number of edges of the input. Additionally, we extend our result to the
Max-k-Cut problem for k > 2, with minimal modification to the main algorithm. We provide analysis and extensive experimentation that
supports our results.

Index Terms—Max-Cut, Max-k-Cut, Robust, Greedy.

✦

1 INTRODUCTION

THE introduction goes here. ??.
??.
The main contributions of this paper are:

1) Novel algorithms. We present robust greedy iterative
algorithms to solve the Max-k-Cut relaxations for k ≥ 2,
with time complexities O(mn) for k = 2 and O(n3) for
k > 2, and space complexity O(n2) (Algorithms 1 and
2).

2) Analysis. We provide an analysis of the algorithms
proposed.

3) Empirical Results. We provide an exhaustive set of
empirical results in support of our results. An imple-
mentation of our algorithm can be found in [LINK].
In addition, we also prepared a google colab notebook
where our results can be replicated [LINK].

2 RELATED WORK

The related work goes here.

3 PRELIMINARIES

We made the following assumptions about the input graph
G:

• No self-loops in G (Wi,i = 0 ∀i)
• No parallel edges in G
• Wi,j ∈ R ∀i, j
We use the following notation through the remaining of

the text: I denotes the identity matrix of size (n × n), ∥Vi∥
denotes the Euclidean norm of vector Vi, and V t

i indicates
the value of vector Vi at time t.

4 ALGORITHM (k = 2)
Our main result is algorithm 1. The first key observation
behind this algorithm is to observe that the partial derivative
of the function to optimize f(V ) with respect to vector Vi is:

∂f(V )

∂Vi
= −k − 1

k

∑
j

WijVj

The second key observation behind our algorithm is to
realize that updating the vector Vi as our algorithm does is
(greedy) optimal for vector Vi (given the other vectors are
fixed) and always improves (or at least doesn’t degrade) the
value of f(V ). We prove this in section 5.

Algorithm 1: Main algorithm (k = 2)
Input: Edge weights W and initial output V = I
Output: V
while Convergence criterion is not satisfied do

for i from 1 to n do
Update Vi:

V t+1
i ← −

∑
j Wi,jV

t
j

∥
∑

j Wi,jV t
j ∥

Evaluate convergence.

return V

5 ANALYSIS (k = 2)

As can be seen from algorithm 1, the inner for loop of our
algorithm performs O(mn) operations. To see this, observe
that every edge weight Wi,j is only used two times inside
the for loop, one while updating vector Vi and the second
one while updating vector Vj . Given that we have m edges
and the size of every vector Vi is equal to n, this results in
an O(mn) time complexity. Is important to mention that a
naive implementation of algorithm 1 may have an O(n3)
complexity if the sum is taken over all possible values of j
(from 1 to n) and not only over the neighbors of node i.
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Similarly, it can be observed from algorithm 1 that not
extra memory is needed besides the input W and output V ,
therefore having an spatial complexity of O(n2).

An important point to mention is that the for loop does
not to be ordered: we can substitute it by any permutation of
the set of indices.

In the rest of the text, the notation f(V |V t+1
i ) denotes the

value of the function f() evaluated at V when the i-th row
of V is equal to V t+1

i .

Theorem 5.1. For any symmetric matrix W ∈ Rn×n and V ∈
Rn×n s.t. ∥Vi∥ = 1 ∀i, any update performed by algorithm 1
implies a difference f(V |V t+1

i )− f(V |V t
i ) equal to:

k − 1

k
s(1− cos θ) ≥ 0 (1)

where s = ∥
∑

j Wi,jV
t
j ∥ and θ is the angle between V t

i and∑
j Wi,jV

t
j ∝ V t+1

i .

Proof.

f(V |V t+1
i )− f(V |V t

i )

=
k − 1

k

∑
i<j

Wi,j(1− V t+1
i · V t+1

j )

− k − 1

k

∑
i<j

Wi,j(1− V t
i · V t

j )

=
k − 1

k

−∑
i<j

Wi,jV
t+1
i · V t+1

j +
∑
i<j

Wi,jV
t
i · V t

j


=

k − 1

k

−∑
j

Wi,jV
t+1
i · V t

j +
∑
j

Wi,jV
t
i · V t

j


=

k − 1

k

−V t+1
i · (

∑
j

Wi,jV
t
j ) + V t

i · (
∑
j

Wi,jV
t
j )


=

k − 1

k

(
−V t+1

i · (−sV t+1
i ) + V t

i · (−sV t+1
i )

)
=

k − 1

k
s
(
∥V t+1

i ∥2 − V t
i · V t+1

i

)
=

k − 1

k
s(1− cos θ) ≥ 0

where the third equality is because only the i-th row of
V was modified (greediness of the algorithm) and the fifth
equality is implied by the update made by algorithm 1 to Vi.

5.1 Lagrangian (k = 2)
For k = 2, the Lagrangian of the optimization problem is:

k − 1

k

∑
i<j

Wij(1− Vi · Vj) +
∑
i

λi(1− ∥Vi∥2)

Taking the partial derivative of the Lagrangian with
respect to Vi and setting equal to zero gives:

V t+1
i = −k − 1

2kλi

∑
j

Wi,jVj

from here, we can see that updating Vi as our algorithm
does is optimal for vector Vi (given the other vectors

are fixed), and the corresponding value of the Lagrange
multiplier λi is:

λi =
k − 1

2k
∥
∑
j

Wi,jV
t
j ∥

6 EXPERIMENTS (k = 2)
Brief description of the B graphs.

Brief description of the G graphs.
Mention of commercial solvers (mosek, gurobi, etc.).
Table with results.
Plots of convergence.
Brief explanation of results.
2 orders of magnitude faster.

7 MAX-K-CUT

Describe the Max-k-Cut problem, the relaxation we are
working with, the corresponding guarantees, etc.

7.1 Algorithm (k > 2)

Our proposed algorithm for the Max-k-Cut relaxation is algo-
rithm 2. As can be observed, the algorithm is practically the
same algorithm as algorithm 1, but with a main modification:
we need to check that an updated vector V t+1

i does not
violate any of the new restrictions.

Algorithm 2: Second algorithm (k > 2)
Input: Edge weights W , number of cuts k, and initial

output V = I
Output: V
while Convergence criterion is not satisfied do

for i from 1 to n do
Update Vi:

V t+1
i ← −

∑
j Wi,jV

t
j

∥
∑

j Wi,jV t
j ∥

Evaluate restrictions. Execute subroutine 1 for
candidate vector V t+1

i .
Evaluate convergence.

return V

Algorithm 3: Subroutine 1
Input: Edge weights W , current output V and

current candidate vector V t+1
i

Output: c
Set c← V t+1

i

Compute c · Vj ∀j
Set r ← 1
while Any c · Vj < − 1

k−1 do
Set r ← r

2

Set c← rV t+1
i + (1− r)V t

i

Set p← ∥c∥
Set c← 1

pc

return c
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Fig. 1. Example: diagram of vectors V t
i , V t+1

i , interpolation rV t+1
i +

(1− r)V t
i and angle θ

Subroutine 1 is a very simple search procedure: if the
candidate vector c violates any restriction, we move it closer
to the previous vector V t

i through the interpolation rV t+1
i +

(1 − r)V t
i (see fig. 1), which starts with r = 1, then r = 1

2 ,
then r = 1

4 , and so on, hoping that the new candidate
does not violate any restriction. As we can imagine, the
new candidate does not always (actually never, except when
r = 0 or r = 1) has unit norm, so we compute its norm
p = ∥c∥ and normalize every new candidate. In our actual
implementation, in order to prevent long searches, we set a
small number l such that, if the while loop in subroutine 1 is
repeated more than l times, we simply set c = V t

i .

7.2 Analysis (k > 2)

As can be seen from algorithm 2, now the inner for loop
of the algorithm performs O(n3) operations (because the
subroutine 1 performs O(n2) operations). This is the cost to
pay for constantly checking if the restrictions has not been
violated. Also, as can be observed from algorithm 2, the
spatial complexity remains as O(n2). Keeping this spatial
complexity ”low” is not a minor issue. At the best of the
authors knowledge, trying to solve the Max-k-Cut relaxation
with commercial solvers for graphs of moderate size or larger
(like the ones we are experiment with) is problematic due to
memory issues.

The proof of the following theorem is provided in section
A of the Appendix.

Theorem 7.1. For any symmetric matrix W ∈ Rn×n, k ≥ 2,
r ∈ [0, 1] and V ∈ Rn×n s.t. ∥Vi∥ = 1 ∀i, any update performed
by algorithm 2 implies a difference f(V |c)− f(V |V t

i ) equal to:

k − 1

k
s

[
1− p

p
cos θ +

r

p
(1− cos θ)

]
≥ 0 (2)

where s = ∥
∑

j Wi,jV
t
j ∥, θ is the angle between V t

i and∑
j Wi,jV

t
j , r is the final interpolation value of subroutine 1 and

p(r, θ) = ∥c∥ =
√
1 + 4r(r − 1) sin2 θ

2

Observe that, for k = 2, r is always equal to one, and
p(r, θ) = 1 ∀θ ∈ [0, π] (this can also be seen from figure 1),

so the result from theorem 7.1 is the same as the result from
theorem 5.1 for k = 2.

7.3 Lagrangian (k > 2)
For k ≥ 2, the Lagrangian of the optimization problem is:

k − 1

k

∑
i<j

Wij(1− Vi · Vj) +
∑
i

λi(1− ∥Vi∥2)

+
∑
i,j

βi,j

(
1

k − 1
+ Vi · Vj

)
Taking the partial derivative of the Lagrangian with

respect to Vi and setting equal to zero gives:

V t+1
i =

1

2λi

∑
j

(
βi,j −

k − 1

k
Wi,j

)
Vj


Unlike the case when k = 2, now is hard to tell if

updating Vi as our algorithm does is optimal due to the
presence of the Lagrange multipliers βi,j (although we do
know that every update always improves or at least does not
degrade the current solution, as can be seen from theorem
7.1).

7.4 Experiments (k > 2)
Mention of commercial solvers (mosek, gurobi, etc.) memory
issue.

Table with results.
Brief explanation of results.
Table with results.
Plots of convergence.
Brief explanation of results.
mention that robust properties are (at least theoretically)

also extended to this algorithm.

8 ROBUSTNESS OF THE ALGORITHM

Two interesting properties can be observed from the proofs
of the algorithms:

1) As long as ∥Vi∥ = 1 ∀i and the Vi’s are not unidirectional
(pointing in the same direction), any initialization for V
will converge to the optimum.

2) For any positive r, as long as we do not violate any
restriction, the algorithm will converge to the optimum.

In other words, the algorithm is robust to any valid
choices of r and initial V . In order to observe this, we
performed the following experiments for k = 2:

• Random initial matrix V where each Vi,j is sampled
from a Gaussian distribution with mean zero and vari-
ance one, and each Vi is normalized. Additionally, we
choose a random value of r from a uniform distribution
at each step of the algorithm. There is a possible explanation
for the good results in this experiment: given the high
dimensionality of the problem and the way we are sampling
the entries Vi,j , it is a known fact that Vi · Vj = 0 for any
i ̸= j with high probability, therefore the initialization is the
same as the identity matrix but rotated with high probability.

• ”Adversarial” initial matrix V , random value of r from
a uniform distribution at each step of the algorithm: for
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a small graph where we already know the solution, we
initialized V in a way that the corresponding vectors Vi

of nodes that should be in the same cut are in opposite
sides of the hyper-sphere (when possible), and the
corresponding vectors Vi of nodes that should be in
different cuts are the same vector (when possible).

The results of these experiments can be found in section
B of the Appendix.

9 CONCLUSIONS

We present simple greedy iterative algorithms to solve the
Max-k-Cut relaxations for k ≥ 2, with time complexities
O(mn) for k = 2, O(n3) for k > 2, and space complexity
O(n2). Both algorithms are robust to initial values of V and
interpolation values of r. We provide an analysis of our
algorithms and extensive experimentation that supports our
results.

9.1 Future research
There are multiple directions to extend or improve this work:

• ?
• ...



5

Fig. 2. Example: triangle formed by vectors V t
i , c = rV t+1

i + (1− r)V t
i

for a specific value of r, and angle ϕ = π−θ
2

APPENDIX A
PROOFS

The following lemmas will be useful to prove theorem 7.1.

Lemma A.1. For any unitary vectors V t+1
i ∈ Rn, V t

i ∈ Rn,
angle θ ∈ [0, π], and a fixed r ∈ R, the norm p = ∥c∥ of the
interpolation c = rV t+1

i + (1− r)V t
i is equal to:

p(r, θ) = ∥c∥ =
√
1 + 4r(r − 1) sin2

θ

2

Proof. From figure 1, we can observe that the vectors V t+1
i

and V t
i , and the path of the interpolation rV t+1

i + (1− r)V t
i

for r ∈ [0, 1], form a triangle. The two sides corresponding
to the vectors V t+1

i and V t
i of this triangle has length equal

to one, and by simple geometry it can be shown that the
length of the other side is equal to 2 sin θ

2 . With this in mind
and applying the law of cosines to the triangle formed by
vector V t

i , vector c = rV t+1
i + (1− r)V t

i for a specific value
of r and angle ϕ = π−θ

2 (example shown in figure 2), we can
compute p as:

p =

√
∥V t

i ∥2 +
(
2r sin

θ

2

)2

− 4r∥V t
i ∥ sin

θ

2
cosϕ

=

√
1 + 4r2 sin2

θ

2
− 4r sin

θ

2
cos

π − θ

2

=

√
1 + 4r2 sin2

θ

2
− 4r sin

θ

2
sin

θ

2

=

√
1 + 4r2 sin2

θ

2
− 4r sin2

θ

2

=

√
1 + 4r(r − 1) sin2

θ

2

Before continuing with the next lemma, it will be useful
to compute the partial derivative of p(r, θ) with respect to r:

∂p(r, θ)

∂r
=

1

2p(r, θ)
(8r − 4) sin2

θ

2

=
2

p(r, θ)
(2r − 1) sin2

θ

2

=
1

p(r, θ)
(2r − 1)(1− cos θ)

We can observe from this equality that for a fixed value
of θ, the minimum value of p is reached when r = 1

2 , as can
be observed in figures 1 and 2.

Lemma A.2. For any r ∈ [0, 1], θ ∈ [0, π] and p(r, θ) =√
1 + 4r(r − 1) sin2 θ

2 , the function:

g(r, θ) =
1− p

p
cos θ +

r

p
(1− cos θ)

is always greater or equal to zero.

Proof. We will follow the next logic to prove the lemma:
firstly, we prove that for r = 0 the function g(r, θ) = 0. This
is easy to prove: from figures 1 and 2, and lemma A.1, we
can observe that when r = 0, p(r, θ) = 1 ∀θ ∈ [0, π]. Due
this, the value of g(r, θ) = 0 for r = 0, ∀θ ∈ [0, π].

Secondly, we prove that for r ∈ [0, 1], the partial deriva-
tive of g(r, θ) with respect to r is always non-negative. For
clarity and to save space, we will omit the dependence of
p(r, θ) and only write p:

∂g(r, θ)

∂r
=

1− cos θ

p2
(p− (2r − 1) cos θ)

− 1− cos θ

p2
(2r − 1)g(r, θ)

=
1− cos θ

p2
(p− (2r − 1)(g(r, θ) + cos θ))

=
1− cos θ

p2

(
p− (2r − 1)

(
1

p
(cos θ + r(1− cos θ))

))
=

1− cos θ

p3
(
p2 − (2r − 1)(cos θ + r(1− cos θ))

)
=

1− cos θ

p3

(
1 + 4r(r − 1) sin2

θ

2

)
− 1− cos θ

p3
(2r − 1)(cos θ + r(1− cos θ))

=
1− cos θ

p3
(1 + 2r(r − 1)(1− cos θ))

− 1− cos θ

p3
(2r − 1)(cos θ + r(1− cos θ))

=
1− cos θ

p3
(1− r)(1 + cos θ)

=
sin2 θ

p3
(1− r)

where we multiplied by 1 = (pp ) in the fourth equality.
We can observe that for any θ ∈ [0, π], the partial derivative
∂g(r,θ)

∂r is positive for any r < 1, equal to zero for r = 1, and
negative for any r > 1.

From the last proof we can observe the optimality of
r = 1 in the interpolation c = rV t+1

i + (1− r)V t
i , i.e, when

c = V t+1
i = −

∑
j Wi,jV

t
j

∥
∑

j Wi,jV t
j ∥ . We already observed this from

the Lagrangian in subsection 7.3 when k = 2.

A.1 Proof of theorem 7.1
Observe that, after subroutine 1, the updated vector has the
form c =

rV t+1
i +(1−r)V t

i

p for a value of r ∈ [0, 1]. The proof
starts exactly like the proof of theorem 5.1 until the third
equality, so we recycle these steps:
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Proof.

f(V |c)− f(V |V t
i )

=
k − 1

k

−∑
j

Wi,jc · V t
j +

∑
j

Wi,jV
t
i · V t

j


=

k − 1

k

−c · (∑
j

Wi,jV
t
j ) + V t

i · (
∑
j

Wi,jV
t
j )


=

k − 1

k

(
−c · (−sV t+1

i ) + V t
i · (−sV t+1

i )
)

=
k − 1

k
s
(
c · V t+1

i − V t
i · V t+1

i

)
=

k − 1

k
s

(
rV t+1

i + (1− r)V t
i

p
· V t+1

i − cos θ

)

=
k − 1

k
s

(
r

p
V t+1
i · V t+1

i +
1− r

p
V t
i · V t+1

i − cos θ

)
=

k − 1

k
s

(
r

p
∥V t+1

i ∥2 + 1− r

p
cos θ − cos θ

)
=

k − 1

k
s

(
1− p

p
cos θ +

r

p
(1− cos θ)

)
=

k − 1

k
sg(r, θ)

and due lemma A.2, the theorem is proven.

APPENDIX B
ROBUSTNESS EXPERIMENTS

Robustness experiments (random interpolation value r,
random initial V , adversarial initial V ) results goes here.
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